Saturday, 22 December 2012

Bab 1 : Janjang

Assalamualaikum .. 


  Janjang atau dikenali sebagai Progressions dalam bahasa Inggeris, merupakan satu jujukan nombor yang memenuhi syarat tertentu. Terdapat dua jenis janjang yang akan kita pelajari : 
1. Janjang Aritmetik - Arithmetic Progressions (AP)
2. Janjang Geometri - Geometric Progressions (GP)

AP merupakan suatu jujukan nombor yang mempunyai beza yang sepunya (common difference). 
Sebagai contoh : 1, 3, 5, 7, ... merupakan satu jujukan nombor dengan beza sepunya 2. 

GP pula ialah satu jujukan nombor yang mempunyai nisbah yang sepunya (common ratio). 
Contoh : 4, 16, 64, 256, ... merupakan satu jujukan nombor dengan nisbah sepunya 4. 

Jom kita teruskan kepada Janjang Aritmetik. 

Terdapat dua keadaan bagi Janjang Aritmetik :
1. Jika beza sepunya positif, sebutan akan berterusan hingga ketakterhinggan yang positif
2. Jika beza sepunya negatif, sebutan akan berterusan hingga ketakterhinggan yang negatif. 
Contoh : Jika beza sepunya negatif .. 
Biarkan beza sepunya -3. Mulakan dengan nombor 1. 
= 1, -2 , -5, -8, ... 
Nampak tak? Sebutan bagi janjang ini menjadi semakin negatif. 
Sebutan bagi janjang aritmetik diperoleh dengan menambah sebutan sebelumnya dengan beza sepunya. 
= 1 + (-3) = -2 + (-3) = -5 ... 
Jadi, untuk mencari beza sepunya, terbalikkan proses penambahan menjadi proses penolakan. 
Sebutan yang diperoleh ialah, 
= 1, -2, -5, ... 
Maka, beza sepunya = -2 - 1 = -5 - (-2) = -3 

Rumus asasnya ialah, dengan d sebagai beza sepunya. 


 Ini hanya rumus, cara paling mudah ialah hanya ambil sebutan kedua tolak sebutan pertama. Jika ambil sebutan ketiga, maka tolak sebutan kedua. Ambil yang depan tolak yang belakang, dengan syarat, dua sebutan itu mestilah berjujukan. 
Contoh : 

Tentukan sama ada sebutan berikut merupakan janjang aritmetik. 
a) -10, -6, -2, ...
b) 4q, 5q, 7q, 10q, ... 

Penyelesaian : 
a) Ambil sebutan yang depan tolak belakang. 
-6 - (-10) = 4
-2 - (-6) = 4 
Kedua-duanya mendapat nilai yang sama, maka -10, -6, -2, ... merupakan janjang aritmetik. 

b) Depan tolak belakang. 
5q - 4q = q
7q - 5q = 2q
10q - 7q = 3q 
Nilai yang diperoleh tidak sama, maka 4q, 5q, 7q, ... bukan satu janjang aritmetik. 

Ok, begitu mudah bukan? Jom teruskan kepada subtopik seterusnya. 

Sebutan ke-n dalam satu Janjang Aritmetik. 


Ok, untuk mencari sebutan ke-n, 2 perkara penting yang perlu kita ada, iaitu a dan d. a ialah sebutan pertama bagi satu-satu janjang. Terus kepada contoh. 

Diberi, 3 sebutan pertama dalam satu janjang ialah 2, 10, 18, ... Cari sebutan ke-19 

Penyelesaian : 

Kaedah Pertama : Menggunakan rumus (Lebih cepat dan lebih cool, haha) 
Dalam kes ini, n = 19. Perlu dicari dahulu a dan d. a = sebutan pertama, a = 2. 
d = beza sepunya. d = T3 - T2 = T2 - T1
d = 18 - 10 = 10 - 2 
d = 8 
Ok, maklumat sudah diperoleh. Jom cari sebutan ke-19! 
a = 2, d = 8, n = 19. 
T19 = 2 + (19 - 1)(8)
       = 2 +144
       = 146 

Kaedah Kedua : Kaedah Manual (Sememangnya lambat) 
Kaedah ini lebih sesuai untuk penyemakan. Apa yang perlu ialah d. d = 8.
Maka, campurkan satu persatu sehingga anda memperoleh sebutan ke-19. 
2 + 8 = 10 + 8 = 18 + 8 = 26 + 8 = 34 + 8 = 42 + 8 = 50 + 8 = 58 + 8 = 66 + 8 = 74 + 8 = 82 + 8 = 90 + 8 = 98 + 8 = 106 + 8 = 114 + 8 = 122 + 8 = 130 + 8 = 138 + 8 = 146. 
Agak lambat bukan? Jadi, sila gunakan rumus yang telah dicipta. Jangan risau! Rumus disediakan dalam exam

Saya akan tunjukkan soalan yang kerap ditanya dalam exam

SPM 2007 : Kertas 1 : Soalan 10 
Tiga sebutan berturut-turut bagi suatu janjang aritmetik ialah 5 - x, 8, 2x
Cari beza sepunya janjang itu. 

Penyelesaian : 
Masih ingat lagi rumus mencari beza sepunya? Depan tolak belakang. 
8 - (5 - x) = 2x - 8    .... Pastikan letak kurungan untuk mengelakkan kesilapan
  8 - 5 + x = 2x - 8 
        3 + x = 2x - 8 
             -x = -11
               x = 11
Masih bukan jawapannya lagi. Anda perlu menggantikan nilai x untuk mendapatkan sebutan sebutan bagi janjang tersebut. 
5 - (11), 8, 2(11) = -6 , 8, 22 
Ok, ini sebutan yang sebenar. Hanya ambil yang depan tolak belakang. Salah satu sahaja. 
22 - 8 = 14
8 - (-6) = 14
d = 14 

Hasil Tambah bagi sebutan n pertama Janjang Aritmetik

Ingin tahu bagaiman formula ini diperoleh? Boleh cek di Wikipedia. Saya suka 'tanya' Uncle Wikipedia. Taip sahaja di ruangan kosong pada Pak Cik Google, insya-Allah, jumpa. Hehe. 

Ini merupakan kaedah penggunaan rumus. Jika anda terlebih rajin, maka kaedah manual juga boleh digunakan. 

1. Cari dahulu 10 sebutan pertama. Tambahkan sahajas setiap persamaan dengan 5. 
Sebutan yang akan diperoleh ialah : 3, 8, 13, 18, 23, 28, 33, 38, 43, 48. 
Hasil tambah 10 sebutan pertama = 3 + 8 + 13 + 18 + 23 + 28 + 33 + 38 + 43 + 48 
                                                   = 255
Dan jika anda tidak reti menggunakan rumus, sila gunakan kaedah manual. Juga diterima dalam skema pemarkahan. Cuma agak melambatkan masa. 

Jika sebutan terakhir diberi, maka rumusnya ialah : 


Contoh : 

Janjang aritmetik 78, 73, 68, ..., -42 mempunyai 25 sebutan. Cari hasil tambah 25 sebutan tersebut.
Penyelesaian : 
1. Hanya cari nilai a dan l
a = 78, l = -42, n = 25

S25 = 25/2 (78 - 42) 
       = 25/2 (36)
       = 450 

Bagi kaedah ini, jangan guna kaedah manual. Betul-betul membazirkan masa. 25 sebutan? Perghh! Banyak tuu. 

Itu sahaja untuk bab Janjang Aritmetik. Jika ada soalan, sila tanya. Tajuk ini merupakan bab pertama Tingkatan 5. Selepas ini, Janjang Geometri. 



13 comments:

Zuyyin Hijrah said...

penerangan sgt detail .. akan jadi menarik apabila ia d tambah dgn bahan graphic.. tq :)

nur hidayah azhar said...

sangat memudahkan, kalau boleh banyakkan contoh. terima kasih.

Anonymous said...

langsung ak nda paham . nda paya la ko buat bgini , buang masa !!!! NOOBB

Bjane said...

bole laa.. (:

Syaidahtul Aziz said...

Uh dear... Sya faham ja... Jd dia bgantung sbnrnya...

Anonymous said...

terima kasih..saya faham sangat..selalu tengok :)

Anonymous said...

hurmmm yang awal2 tu phm lah :3 tai yang bwh tu argh hahah maybe sbb x bljr lagi hehehe btw thnks

DaPro Kivakaixa said...

Klu cari bil. Gandaan 6 antara 50 hingga 250 cam ne lak?

ainul70 said...

Sgt simple and sng masukk..thanks to admin..thumbs up��

ainul70 said...

Sgt simple and sng masukk..thanks to admin..thumbs up��

Asyraf Shahran said...

contoh kalau dia suh cari x dlm arimetrik tu cmne ye seperti 2x+1,4x,5x+1 adalah sebutan pertama.cari nilai x

Nurhasni Amirah said...

Asyraf Shahran : kalau soalan macam tu kena guna formula

F2-F1 = F3-F2

Am Rantau said...

Lepastu camne lak kalau die mintak sebutan ke 13